easy ciphers

Easy Ciphers Tools:
cryptography lectures
popular ciphers:

mosasauria

geismar

praelongum

propongo

pacemaker

enjoining

reties

irregardless

aduocaremini

howatt

integraque

catterall

kapere

ruthenian

deriguit

substitutable

loquax

cingebaturque


Caesar cipher

Caesar cipher, is one of the simplest and most widely known encryption techniques. The transformation can be represented by aligning two alphabets, the cipher alphabet is the plain alphabet rotated left or right by some number of positions.

When encrypting, a person looks up each letter of the message in the 'plain' line and writes down the corresponding letter in the 'cipher' line. Deciphering is done in reverse.
The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. Encryption of a letter x by a shift n can be described mathematically as

Plaintext: yurko
cipher variations:
zvslp awtmq bxunr cyvos dzwpt
eaxqu fbyrv gczsw hdatx iebuy
jfcvz kgdwa lhexb mifyc njgzd
okhae plibf qmjcg rnkdh solei
tpmfj uqngk vrohl wspim xtqjn

Decryption is performed similarly,

(There are different definitions for the modulo operation. In the above, the result is in the range 0...25. I.e., if x+n or x-n are not in the range 0...25, we have to subtract or add 26.)
Read more ...
Atbash Cipher

Atbash is an ancient encryption system created in the Middle East. It was originally used in the Hebrew language.
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
An example plaintext to ciphertext using Atbash:
Plain: yurko
Cipher: bfipl

Read more ...

 

Baconian Cipher

To encode a message, each letter of the plaintext is replaced by a group of five of the letters 'A' or 'B'. This replacement is done according to the alphabet of the Baconian cipher, shown below.
a   AAAAA   g    AABBA     m    ABABB   s    BAAAB     y    BABBA
b   AAAAB   h    AABBB     n    ABBAA   t    BAABA     z    BABBB
c   AAABA   i    ABAAA     o    ABBAB   u    BAABB 
d   AAABB   j    BBBAA     p    ABBBA   v    BBBAB
e   AABAA   k    ABAAB     q    ABBBB   w    BABAA
f   AABAB   l    ABABA     r    BAAAA   x    BABAB

Plain: yurko
Cipher: BABBA BAABB BAAAA ABAAB ABBAB

Read more ...

 

Affine Cipher
In the affine cipher the letters of an alphabet of size m are first mapped to the integers in the range 0..m - 1. It then uses modular arithmetic to transform the integer that each plaintext letter corresponds to into another integer that correspond to a ciphertext letter. The encryption function for a single letter is

where modulus m is the size of the alphabet and a and b are the key of the cipher. The value a must be chosen such that a and m are coprime.
Considering the specific case of encrypting messages in English (i.e. m = 26), there are a total of 286 non-trivial affine ciphers, not counting the 26 trivial Caesar ciphers. This number comes from the fact there are 12 numbers that are coprime with 26 that are less than 26 (these are the possible values of a). Each value of a can have 26 different addition shifts (the b value) ; therefore, there are 12*26 or 312 possible keys.
Plaintext: yurko
cipher variations:
zvslpvjafrrxiztnlqtvjzynxfnghzxpwvdtdepf
prmjhlfudjhtcxldhkrnawtmqwkbgssyjauomruw
kazoygohiayqxweuefqgqsnkimgvekiudymeilso
bxunrxlchttzkbvpnsvxlbapzhpijbzryxfvfgrh
rtoljnhwfljveznfjmtpcyvosymdiuualcwqotwy
mcbqaiqjkcaszygwghsisupmkoixgmkwfaogknuq
dzwptznejvvbmdxrpuxzndcrbjrkldbtazhxhitj
tvqnlpjyhnlxgbphlovreaxquaofkwwcneysqvya
oedsckslmecubaiyijukuwromqkziomyhcqimpws
fbyrvbpglxxdofztrwzbpfetdltmnfdvcbjzjkvl
vxspnrlajpnzidrjnqxtgczswcqhmyyepgausxac
qgfuemunogewdckaklwmwytqosmbkqoajeskoryu
hdatxdrinzzfqhbvtybdrhgvfnvophfxedlblmxn
xzurptnclrpbkftlpszviebuyesjoaagricwuzce
sihwgowpqigyfemcmnyoyavsquodmsqclgumqtaw
jfcvzftkpbbhsjdxvadftjixhpxqrjhzgfndnozp
zbwtrvpentrdmhvnrubxkgdwagulqccitkeywbeg
ukjyiqyrskiahgoeopaqacxuswqfouseniwosvcy
lhexbhvmrddjulfzxcfhvlkzjrzstljbihpfpqbr
bdyvtxrgpvtfojxptwdzmifyciwnseekvmgaydgi
wmlaksatumkcjiqgqrcscezwuyshqwugpkyquxea
njgzdjxotfflwnhbzehjxnmbltbuvnldkjrhrsdt
dfaxvztirxvhqlzrvyfbokhaekypuggmxoicafik
yoncmucvwomelksisteuegbywaujsywirmaswzgc
plibflzqvhhnypjdbgjlzpodnvdwxpnfmltjtufv
fhczxbvktzxjsnbtxahdqmjcgmarwiiozqkechkm
aqpeowexyqognmukuvgwgidaycwluayktocuybie
rnkdhnbsxjjparlfdilnbrqfpxfyzrphonvlvwhx
hjebzdxmvbzlupdvzcjfsoleioctykkqbsmgejmo
csrgqygzasqipowmwxiyikfcaeynwcamvqewadkg
tpmfjpduzllrctnhfknpdtshrzhabtrjqpxnxyjz
jlgdbfzoxdbnwrfxbelhuqngkqevammsduoigloq
eutisaibcuskrqyoyzkakmhecgapyecoxsgycfmi
vrohlrfwbnntevpjhmprfvujtbjcdvtlsrzpzalb
lnifdhbqzfdpythzdgnjwspimsgxcooufwqkinqs
gwvkuckdewumtsaqabmcmojgeicrageqzuiaehok
xtqjnthydppvgxrljorthxwlvdlefxvnutbrbcnd
npkhfjdsbhfravjbfiplyurkouizeqqwhysmkpsu
iyxmwemfgywovucscdoeoqligketcigsbwkcgjqm

The decryption function is

where a - 1 is the modular multiplicative inverse of a modulo m. I.e., it satisfies the equation

The multiplicative inverse of a only exists if a and m are coprime. Hence without the restriction on a decryption might not be possible. It can be shown as follows that decryption function is the inverse of the encryption function,

Read more ...

 

ROT13 Cipher
Applying ROT13 to a piece of text merely requires examining its alphabetic characters and replacing each one by the letter 13 places further along in the alphabet, wrapping back to the beginning if necessary. A becomes N, B becomes O, and so on up to M, which becomes Z, then the sequence continues at the beginning of the alphabet: N becomes A, O becomes B, and so on to Z, which becomes M. Only those letters which occur in the English alphabet are affected; numbers, symbols, whitespace, and all other characters are left unchanged. Because there are 26 letters in the English alphabet and 26 = 2 * 13, the ROT13 function is its own inverse:

ROT13(ROT13(x)) = x for any basic Latin-alphabet text x


An example plaintext to ciphertext using ROT13:

Plain: yurko
Cipher: lhexb

Read more ...

 

Polybius Square

A Polybius Square is a table that allows someone to translate letters into numbers. To give a small level of encryption, this table can be randomized and shared with the recipient. In order to fit the 26 letters of the alphabet into the 25 spots created by the table, the letters i and j are usually combined.
1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Basic Form:
Plain: yurko
Cipher: 4554245243

Extended Methods:
Method #1

Plaintext: yurko
method variations:
dzwptiebuyokgzdtpmei

Method #2
Bifid cipher
The message is converted to its coordinates in the usual manner, but they are written vertically beneath:
y u r k o 
4 5 2 5 4 
5 4 4 2 3 
They are then read out in rows:
4525454423
Then divided up into pairs again, and the pairs turned back into letters using the square:
Plain: yurko
Cipher: ywytm

Read more ...
Method #3

Plaintext: yurko
method variations:
ziyrs iyrsz yrszi
rsziy sziyr

Read more ...[RUS] , [EN]

 

Permutation Cipher
In classical cryptography, a permutation cipher is a transposition cipher in which the key is a permutation. To apply a cipher, a random permutation of size E is generated (the larger the value of E the more secure the cipher). The plaintext is then broken into segments of size E and the letters within that segment are permuted according to this key.
In theory, any transposition cipher can be viewed as a permutation cipher where E is equal to the length of the plaintext; this is too cumbersome a generalisation to use in actual practice, however.
The idea behind a permutation cipher is to keep the plaintext characters unchanged, butalter their positions by rearrangement using a permutation
This cipher is defined as:
Let m be a positive integer, and K consist of all permutations of {1,...,m}
For a key (permutation) , define:
The encryption function
The decryption function
A small example, assuming m = 6, and the key is the permutation :

The first row is the value of i, and the second row is the corresponding value of (i)
The inverse permutation, is constructed by interchanging the two rows, andrearranging the columns so that the first row is in increasing order, Therefore, is:

Total variation formula:

e = 2,718281828 , n - plaintext length

Plaintext: yurko

all 120 cipher variations:
yurko yurok yukro yukor yuokr yuork yruko yruok yrkuo yrkou yroku
yrouk ykruo ykrou ykuro ykuor ykour ykoru yorku yoruk yokru yokur
youkr yourk uyrko uyrok uykro uykor uyokr uyork uryko uryok urkyo
urkoy uroky uroyk ukryo ukroy ukyro ukyor ukoyr ukory uorky uoryk
uokry uokyr uoykr uoyrk ruyko ruyok rukyo rukoy ruoky ruoyk ryuko
ryuok rykuo rykou ryoku ryouk rkyuo rkyou rkuyo rkuoy rkouy rkoyu
royku royuk rokyu rokuy rouky rouyk kuryo kuroy kuyro kuyor kuoyr
kuory kruyo kruoy kryuo kryou kroyu krouy kyruo kyrou kyuro kyuor
kyour kyoru koryu koruy koyru koyur kouyr koury ourky ouryk oukry
oukyr ouykr ouyrk oruky oruyk orkuy orkyu oryku oryuk okruy okryu
okury okuyr okyur okyru oyrku oyruk oykru oykur oyukr oyurk

Read more ...[1] , [2] , [3]

History of cryptography
2011 Easy Ciphers. All rights reserved. contact us