easy ciphers

Easy Ciphers Tools:
cryptography lectures
popular ciphers:

dustiness

barothermograph

roomily

landes

sternwood

novikoff

torinese

rackum

meesters

untremendous

kreplech

parergic

aerobranchiate

desrosier

dianodal

enbedded

sternorque

spacebal


Caesar cipher

Caesar cipher, is one of the simplest and most widely known encryption techniques. The transformation can be represented by aligning two alphabets, the cipher alphabet is the plain alphabet rotated left or right by some number of positions.

When encrypting, a person looks up each letter of the message in the 'plain' line and writes down the corresponding letter in the 'cipher' line. Deciphering is done in reverse.
The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. Encryption of a letter x by a shift n can be described mathematically as

Plaintext: pgmac
cipher variations:
qhnbd rioce sjpdf tkqeg ulrfh
vmsgi wnthj xouik ypvjl zqwkm
arxln bsymo ctznp duaoq evbpr
fwcqs gxdrt hyesu izftv jaguw
kbhvx lciwy mdjxz nekya oflzb

Decryption is performed similarly,

(There are different definitions for the modulo operation. In the above, the result is in the range 0...25. I.e., if x+n or x-n are not in the range 0...25, we have to subtract or add 26.)
Read more ...
Atbash Cipher

Atbash is an ancient encryption system created in the Middle East. It was originally used in the Hebrew language.
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
An example plaintext to ciphertext using Atbash:
Plain: pgmac
Cipher: ktnzx

Read more ...

 

Baconian Cipher

To encode a message, each letter of the plaintext is replaced by a group of five of the letters 'A' or 'B'. This replacement is done according to the alphabet of the Baconian cipher, shown below.
a   AAAAA   g    AABBA     m    ABABB   s    BAAAB     y    BABBA
b   AAAAB   h    AABBB     n    ABBAA   t    BAABA     z    BABBB
c   AAABA   i    ABAAA     o    ABBAB   u    BAABB 
d   AAABB   j    BBBAA     p    ABBBA   v    BBBAB
e   AABAA   k    ABAAB     q    ABBBB   w    BABAA
f   AABAB   l    ABABA     r    BAAAA   x    BABAB

Plain: pgmac
Cipher: ABBBA AABBA ABABB AAAAA AAABA

Read more ...

 

Affine Cipher
In the affine cipher the letters of an alphabet of size m are first mapped to the integers in the range 0..m - 1. It then uses modular arithmetic to transform the integer that each plaintext letter corresponds to into another integer that correspond to a ciphertext letter. The encryption function for a single letter is

where modulus m is the size of the alphabet and a and b are the key of the cipher. The value a must be chosen such that a and m are coprime.
Considering the specific case of encrypting messages in English (i.e. m = 26), there are a total of 286 non-trivial affine ciphers, not counting the 26 trivial Caesar ciphers. This number comes from the fact there are 12 numbers that are coprime with 26 that are less than 26 (these are the possible values of a). Each value of a can have 26 different addition shifts (the b value) ; therefore, there are 12*26 or 312 possible keys.
Plaintext: pgmac
cipher variations:
qhnbdutlbhyfjblcrhbpgdfbtkpdbxsnzbfwzxbj
alvbnextbrijrbvmvpbzriocevumcizgkcmdsicq
hegculqecytoacgxayckbmwcofyucsjkscwnwqca
sjpdfwvndjahldnetjdrifhdvmrfdzupbdhybzdl
cnxdpgzvdtkltdxoxrdbtkqegxwoekbimeofukes
jgiewnsgeavqceizcaemdoyeqhaweulmueypysec
ulrfhyxpflcjnfpgvlftkhjfxothfbwrdfjadbfn
epzfribxfvmnvfzqztfdvmsgizyqgmdkogqhwmgu
likgypuigcxsegkbecgofqagsjcygwnowgarauge
wnthjazrhnelphrixnhvmjlhzqvjhdytfhlcfdhp
grbhtkdzhxopxhbsbvhfxouikbasiofmqisjyoiw
nkmiarwkiezugimdgeiqhsciuleaiypqyictcwig
ypvjlcbtjpgnrjtkzpjxolnjbsxljfavhjnehfjr
itdjvmfbjzqrzjdudxjhzqwkmdcukqhoskulaqky
pmokctymkgbwikofigksjuekwngckarsakeveyki
arxlnedvlriptlvmbrlzqnplduznlhcxjlpgjhlt
kvflxohdlbstblfwfzljbsymofewmsjqumwncsma
roqmevaomidykmqhkimulwgmypiemctucmgxgamk
ctznpgfxntkrvnxodtnbsprnfwbpnjezlnriljnv
mxhnzqjfnduvdnhyhbnlduaoqhgyoulswoypeuoc
tqsogxcqokfamosjmkownyioarkgoevweoizicom
evbprihzpvmtxpzqfvpdurtphydrplgbnptknlpx
ozjpbslhpfwxfpjajdpnfwcqsjiaqwnuyqargwqe
vsuqizesqmhcoqulomqypakqctmiqgxygqkbkeqo
gxdrtkjbrxovzrbshxrfwtvrjaftrnidprvmpnrz
qblrdunjrhyzhrlclfrphyesulkcsypwasctiysg
xuwskbgusojeqswnqosarcmsevoksizaismdmgsq
izftvmldtzqxbtdujzthyvxtlchvtpkfrtxorptb
sdntfwpltjabjtnenhtrjaguwnmeuarycuevkaui
zwyumdiwuqlgsuypsqucteougxqmukbckuofoius
kbhvxonfvbszdvfwlbvjaxzvnejxvrmhtvzqtrvd
ufpvhyrnvlcdlvpgpjvtlciwypogwctaewgxmcwk
byawofkywsniuwaruswevgqwizsowmdemwqhqkwu
mdjxzqphxdubfxhyndxlczbxpglzxtojvxbsvtxf
whrxjatpxnefnxrirlxvnekyarqiyevcgyizoeym
dacyqhmayupkwyctwuygxisykbuqyofgoysjsmyw
oflzbsrjzfwdhzjapfznebdzrinbzvqlxzduxvzh
yjtzlcvrzpghpztktnzxpgmactskagxeiakbqgao
fceasjocawrmyaevywaizkuamdwsaqhiqauluoay

The decryption function is

where a - 1 is the modular multiplicative inverse of a modulo m. I.e., it satisfies the equation

The multiplicative inverse of a only exists if a and m are coprime. Hence without the restriction on a decryption might not be possible. It can be shown as follows that decryption function is the inverse of the encryption function,

Read more ...

 

ROT13 Cipher
Applying ROT13 to a piece of text merely requires examining its alphabetic characters and replacing each one by the letter 13 places further along in the alphabet, wrapping back to the beginning if necessary. A becomes N, B becomes O, and so on up to M, which becomes Z, then the sequence continues at the beginning of the alphabet: N becomes A, O becomes B, and so on to Z, which becomes M. Only those letters which occur in the English alphabet are affected; numbers, symbols, whitespace, and all other characters are left unchanged. Because there are 26 letters in the English alphabet and 26 = 2 * 13, the ROT13 function is its own inverse:

ROT13(ROT13(x)) = x for any basic Latin-alphabet text x


An example plaintext to ciphertext using ROT13:

Plain: pgmac
Cipher: ctznp

Read more ...

 

Polybius Square

A Polybius Square is a table that allows someone to translate letters into numbers. To give a small level of encryption, this table can be randomized and shared with the recipient. In order to fit the 26 letters of the alphabet into the 25 spots created by the table, the letters i and j are usually combined.
1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Basic Form:
Plain: pgmac
Cipher: 5322231131

Extended Methods:
Method #1

Plaintext: pgmac
method variations:
umrfhzrwlnewbqskbgvx

Method #2
Bifid cipher
The message is converted to its coordinates in the usual manner, but they are written vertically beneath:
p g m a c 
5 2 2 1 3 
3 2 3 1 1 
They are then read out in rows:
5221332311
Then divided up into pairs again, and the pairs turned back into letters using the square:
Plain: pgmac
Cipher: kbnma

Read more ...
Method #3

Plaintext: pgmac
method variations:
hgclv gclvh clvhg
lvhgc vhgcl

Read more ...[RUS] , [EN]

 

Permutation Cipher
In classical cryptography, a permutation cipher is a transposition cipher in which the key is a permutation. To apply a cipher, a random permutation of size E is generated (the larger the value of E the more secure the cipher). The plaintext is then broken into segments of size E and the letters within that segment are permuted according to this key.
In theory, any transposition cipher can be viewed as a permutation cipher where E is equal to the length of the plaintext; this is too cumbersome a generalisation to use in actual practice, however.
The idea behind a permutation cipher is to keep the plaintext characters unchanged, butalter their positions by rearrangement using a permutation
This cipher is defined as:
Let m be a positive integer, and K consist of all permutations of {1,...,m}
For a key (permutation) , define:
The encryption function
The decryption function
A small example, assuming m = 6, and the key is the permutation :

The first row is the value of i, and the second row is the corresponding value of (i)
The inverse permutation, is constructed by interchanging the two rows, andrearranging the columns so that the first row is in increasing order, Therefore, is:

Total variation formula:

e = 2,718281828 , n - plaintext length

Plaintext: pgmac

all 120 cipher variations:
pgmac pgmca pgamc pgacm pgcam pgcma pmgac pmgca pmagc pmacg pmcag
pmcga pamgc pamcg pagmc pagcm pacgm pacmg pcmag pcmga pcamg pcagm
pcgam pcgma gpmac gpmca gpamc gpacm gpcam gpcma gmpac gmpca gmapc
gmacp gmcap gmcpa gampc gamcp gapmc gapcm gacpm gacmp gcmap gcmpa
gcamp gcapm gcpam gcpma mgpac mgpca mgapc mgacp mgcap mgcpa mpgac
mpgca mpagc mpacg mpcag mpcga mapgc mapcg magpc magcp macgp macpg
mcpag mcpga mcapg mcagp mcgap mcgpa agmpc agmcp agpmc agpcm agcpm
agcmp amgpc amgcp ampgc ampcg amcpg amcgp apmgc apmcg apgmc apgcm
apcgm apcmg acmpg acmgp acpmg acpgm acgpm acgmp cgmap cgmpa cgamp
cgapm cgpam cgpma cmgap cmgpa cmagp cmapg cmpag cmpga camgp campg
cagmp cagpm capgm capmg cpmag cpmga cpamg cpagm cpgam cpgma

Read more ...[1] , [2] , [3]

History of cryptography
2011 Easy Ciphers. All rights reserved. contact us