easy ciphers

Easy Ciphers Tools:
cryptography lectures
popular ciphers:

concubinary

mythomaniac

outhaul

kaitlin

labiche

thronal

vakeel

unbeloved

goodma

solvamur

croce

dwalsh

jelerang

kaapstadt

naringenin

litigious

delmarvae

untripe


Caesar cipher

Caesar cipher, is one of the simplest and most widely known encryption techniques. The transformation can be represented by aligning two alphabets, the cipher alphabet is the plain alphabet rotated left or right by some number of positions.

When encrypting, a person looks up each letter of the message in the 'plain' line and writes down the corresponding letter in the 'cipher' line. Deciphering is done in reverse.
The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. Encryption of a letter x by a shift n can be described mathematically as

Plaintext: gentl
cipher variations:
hfoum igpvn jhqwo kirxp ljsyq
mktzr nluas omvbt pnwcu qoxdv
rpyew sqzfx tragy usbhz vtcia
wudjb xvekc ywfld zxgme ayhnf
bziog cajph dbkqi eclrj fdmsk

Decryption is performed similarly,

(There are different definitions for the modulo operation. In the above, the result is in the range 0...25. I.e., if x+n or x-n are not in the range 0...25, we have to subtract or add 26.)
Read more ...
Atbash Cipher

Atbash is an ancient encryption system created in the Middle East. It was originally used in the Hebrew language.
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
An example plaintext to ciphertext using Atbash:
Plain: gentl
Cipher: tvmgo

Read more ...

 

Baconian Cipher

To encode a message, each letter of the plaintext is replaced by a group of five of the letters 'A' or 'B'. This replacement is done according to the alphabet of the Baconian cipher, shown below.
a   AAAAA   g    AABBA     m    ABABB   s    BAAAB     y    BABBA
b   AAAAB   h    AABBB     n    ABBAA   t    BAABA     z    BABBB
c   AAABA   i    ABAAA     o    ABBAB   u    BAABB 
d   AAABB   j    BBBAA     p    ABBBA   v    BBBAB
e   AABAA   k    ABAAB     q    ABBBB   w    BABAA
f   AABAB   l    ABABA     r    BAAAA   x    BABAB

Plain: gentl
Cipher: AABBA AABAA ABBAA BAABA ABABA

Read more ...

 

Affine Cipher
In the affine cipher the letters of an alphabet of size m are first mapped to the integers in the range 0..m - 1. It then uses modular arithmetic to transform the integer that each plaintext letter corresponds to into another integer that correspond to a ciphertext letter. The encryption function for a single letter is

where modulus m is the size of the alphabet and a and b are the key of the cipher. The value a must be chosen such that a and m are coprime.
Considering the specific case of encrypting messages in English (i.e. m = 26), there are a total of 286 non-trivial affine ciphers, not counting the 26 trivial Caesar ciphers. This number comes from the fact there are 12 numbers that are coprime with 26 that are less than 26 (these are the possible values of a). Each value of a can have 26 different addition shifts (the b value) ; therefore, there are 12*26 or 312 possible keys.
Plaintext: gentl
cipher variations:
hfoumtnogifvoserdoeadloqwptocsnjoakzromg
lzoycxhokyjpowuvxoiqigpvnuophjgwptfsepfb
emprxqupdtokpblaspnhmapzdyiplzkqpxvwypjr
jhqwovpqikhxqugtfqgcfnqsyrvqeuplqcmbtqoi
nbqaezjqmalrqywxzqkskirxpwqrjliyrvhugrhd
gortzswrfvqmrdncurpjocrbfakrnbmsrzxyarlt
ljsyqxrskmjzswivhsiehpsuatxsgwrnseodvsqk
pdscgblsocntsayzbsmumktzrystlnkatxjwitjf
iqtvbuythxsotfpewtrlqetdhcmtpdoutbzactnv
nluasztumolbuykxjukgjruwcvzuiytpugqfxusm
rfueidnuqepvucabduowomvbtauvnpmcvzlykvlh
ksvxdwavjzuqvhrgyvtnsgvfjeovrfqwvdbcevpx
pnwcubvwoqndwamzlwmiltwyexbwkavrwishzwuo
thwgkfpwsgrxwecdfwqyqoxdvcwxproexbnamxnj
muxzfycxlbwsxjtiaxvpuixhlgqxthsyxfdegxrz
rpyewdxyqspfycobnyoknvyagzdymcxtykujbywq
vjyimhryuitzygefhysasqzfxeyzrtqgzdpcozpl
owzbhaezndyuzlvkczxrwkzjniszvjuazhfgiztb
tragyfzasurhaeqdpaqmpxacibfaoezvamwldays
xlakojtawkvbaighjaucusbhzgabtvsibfreqbrn
qybdjcgbpfawbnxmebztymblpkubxlwcbjhikbvd
vtciahbcuwtjcgsfrcsorzcekdhcqgbxcoynfcau
zncmqlvcymxdckijlcwewudjbicdvxukdhtgsdtp
sadfleidrhcydpzogdbvaodnrmwdznyedljkmdxf
xvekcjdewyvleiuhteuqtbegmfjesidzeqaphecw
bpeosnxeaozfemklneygywfldkefxzwmfjviufvr
ucfhngkftjeafrbqifdxcqfptoyfbpagfnlmofzh
zxgmelfgyaxngkwjvgwsvdgiohlgukfbgscrjgey
drgqupzgcqbhgomnpgaiayhnfmghzbyohlxkwhxt
wehjpimhvlgchtdskhfzeshrvqahdrcihpnoqhbj
bziognhiaczpimylxiyuxfikqjniwmhdiuetliga
ftiswrbiesdjiqoprickcajphoijbdaqjnzmyjzv
ygjlrkojxniejvfumjhbgujtxscjftekjrpqsjdl
dbkqipjkcebrkoanzkawzhkmslpkyojfkwgvnkic
hvkuytdkguflksqrtkemeclrjqkldfcslpboalbx
ailntmqlzpkglxhwoljdiwlvzuelhvgmltrsulfn
fdmskrlmegdtmqcpbmcybjmounrmaqlhmyixpmke
jxmwavfmiwhnmustvmgogentlsmnfheunrdqcndz
cknpvosnbrminzjyqnlfkynxbwgnjxionvtuwnhp

The decryption function is

where a - 1 is the modular multiplicative inverse of a modulo m. I.e., it satisfies the equation

The multiplicative inverse of a only exists if a and m are coprime. Hence without the restriction on a decryption might not be possible. It can be shown as follows that decryption function is the inverse of the encryption function,

Read more ...

 

ROT13 Cipher
Applying ROT13 to a piece of text merely requires examining its alphabetic characters and replacing each one by the letter 13 places further along in the alphabet, wrapping back to the beginning if necessary. A becomes N, B becomes O, and so on up to M, which becomes Z, then the sequence continues at the beginning of the alphabet: N becomes A, O becomes B, and so on to Z, which becomes M. Only those letters which occur in the English alphabet are affected; numbers, symbols, whitespace, and all other characters are left unchanged. Because there are 26 letters in the English alphabet and 26 = 2 * 13, the ROT13 function is its own inverse:

ROT13(ROT13(x)) = x for any basic Latin-alphabet text x


An example plaintext to ciphertext using ROT13:

Plain: gentl
Cipher: tragy

Read more ...

 

Polybius Square

A Polybius Square is a table that allows someone to translate letters into numbers. To give a small level of encryption, this table can be randomized and shared with the recipient. In order to fit the 26 letters of the alphabet into the 25 spots created by the table, the letters i and j are usually combined.
1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Basic Form:
Plain: gentl
Cipher: 2251334413

Extended Methods:
Method #1

Plaintext: gentl
method variations:
mksyqrpxdvwuciabzhof

Method #2
Bifid cipher
The message is converted to its coordinates in the usual manner, but they are written vertically beneath:
g e n t l 
2 5 3 4 1 
2 1 3 4 3 
They are then read out in rows:
2534121343
Then divided up into pairs again, and the pairs turned back into letters using the square:
Plain: gentl
Cipher: wsflo

Read more ...
Method #3

Plaintext: gentl
method variations:
wlsdh lsdhw sdhwl
dhwls hwlsd

Read more ...[RUS] , [EN]

 

Permutation Cipher
In classical cryptography, a permutation cipher is a transposition cipher in which the key is a permutation. To apply a cipher, a random permutation of size E is generated (the larger the value of E the more secure the cipher). The plaintext is then broken into segments of size E and the letters within that segment are permuted according to this key.
In theory, any transposition cipher can be viewed as a permutation cipher where E is equal to the length of the plaintext; this is too cumbersome a generalisation to use in actual practice, however.
The idea behind a permutation cipher is to keep the plaintext characters unchanged, butalter their positions by rearrangement using a permutation
This cipher is defined as:
Let m be a positive integer, and K consist of all permutations of {1,...,m}
For a key (permutation) , define:
The encryption function
The decryption function
A small example, assuming m = 6, and the key is the permutation :

The first row is the value of i, and the second row is the corresponding value of (i)
The inverse permutation, is constructed by interchanging the two rows, andrearranging the columns so that the first row is in increasing order, Therefore, is:

Total variation formula:

e = 2,718281828 , n - plaintext length

Plaintext: gentl

all 120 cipher variations:
gentl genlt getnl getln geltn gelnt gnetl gnelt gntel gntle gnlte
gnlet gtnel gtnle gtenl gteln gtlen gtlne glnte glnet gltne glten
gletn glent egntl egnlt egtnl egtln egltn eglnt engtl englt entgl
entlg enltg enlgt etngl etnlg etgnl etgln etlgn etlng elntg elngt
eltng eltgn elgtn elgnt negtl neglt netgl netlg neltg nelgt ngetl
ngelt ngtel ngtle nglte nglet ntgel ntgle ntegl ntelg ntleg ntlge
nlgte nlget nltge nlteg nletg nlegt tengl tenlg tegnl tegln telgn
telng tnegl tnelg tngel tngle tnlge tnleg tgnel tgnle tgenl tgeln
tglen tglne tlnge tlneg tlgne tlgen tlegn tleng lentg lengt letng
letgn legtn legnt lnetg lnegt lnteg lntge lngte lnget ltneg ltnge
lteng ltegn ltgen ltgne lgnte lgnet lgtne lgten lgetn lgent

Read more ...[1] , [2] , [3]

History of cryptography
2011 Easy Ciphers. All rights reserved. contact us