easy ciphers

Easy Ciphers Tools:
cryptography lectures
popular ciphers:

booger

auferret

cowsheds

lebeaux

kojang

mismark

dankish

mudguard

letek

berrybush

demetriou

anchoritism

cinderous

gummosus

naphthanthracene

kolinsky

symptomatics

gloaters


Caesar cipher

Caesar cipher, is one of the simplest and most widely known encryption techniques. The transformation can be represented by aligning two alphabets, the cipher alphabet is the plain alphabet rotated left or right by some number of positions.

When encrypting, a person looks up each letter of the message in the 'plain' line and writes down the corresponding letter in the 'cipher' line. Deciphering is done in reverse.
The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. Encryption of a letter x by a shift n can be described mathematically as

Plaintext: forel
cipher variations:
gpsfm hqtgn iruho jsvip ktwjq
luxkr mvyls nwzmt oxanu pybov
qzcpw radqx sbery tcfsz udgta
vehub wfivc xgjwd yhkxe zilyf
ajmzg bknah clobi dmpcj enqdk

Decryption is performed similarly,

(There are different definitions for the modulo operation. In the above, the result is in the range 0...25. I.e., if x+n or x-n are not in the range 0...25, we have to subtract or add 26.)
Read more ...
Atbash Cipher

Atbash is an ancient encryption system created in the Middle East. It was originally used in the Hebrew language.
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
An example plaintext to ciphertext using Atbash:
Plain: forel
Cipher: ulivo

Read more ...

 

Baconian Cipher

To encode a message, each letter of the plaintext is replaced by a group of five of the letters 'A' or 'B'. This replacement is done according to the alphabet of the Baconian cipher, shown below.
a   AAAAA   g    AABBA     m    ABABB   s    BAAAB     y    BABBA
b   AAAAB   h    AABBB     n    ABBAA   t    BAABA     z    BABBB
c   AAABA   i    ABAAA     o    ABBAB   u    BAABB 
d   AAABB   j    BBBAA     p    ABBBA   v    BBBAB
e   AABAA   k    ABAAB     q    ABBBB   w    BABAA
f   AABAB   l    ABABA     r    BAAAA   x    BABAB

Plain: forel
Cipher: AABAB ABBAB BAAAA AABAA ABABA

Read more ...

 

Affine Cipher
In the affine cipher the letters of an alphabet of size m are first mapped to the integers in the range 0..m - 1. It then uses modular arithmetic to transform the integer that each plaintext letter corresponds to into another integer that correspond to a ciphertext letter. The encryption function for a single letter is

where modulus m is the size of the alphabet and a and b are the key of the cipher. The value a must be chosen such that a and m are coprime.
Considering the specific case of encrypting messages in English (i.e. m = 26), there are a total of 286 non-trivial affine ciphers, not counting the 26 trivial Caesar ciphers. This number comes from the fact there are 12 numbers that are coprime with 26 that are less than 26 (these are the possible values of a). Each value of a can have 26 different addition shifts (the b value) ; therefore, there are 12*26 or 312 possible keys.
Plaintext: forel
cipher variations:
gpsfmqraniativekvqdauxylwezgtsydwjkiferg
shmzccjuhymlcpuwnkxqhqtgnrsbojbujwflwreb
vyzmxfahutzexkljgfshtinaddkviznmdqvxolyr
iruhostcpkcvkxgmxsfcwzanygbivuafylmkhgti
ujobeelwjaonerwypmzsjsviptudqldwlyhnytgd
xabozhcjwvbgzmnlihujvkpcffmxkbpofsxzqnat
ktwjquvermexmziozuheybcpaidkxwchanomjivk
wlqdggnylcqpgtyarobuluxkrvwfsnfynajpavif
zcdqbjelyxdibopnkjwlxmrehhozmdrqhuzbspcv
mvylswxgtogzobkqbwjgaderckfmzyejcpqolkxm
ynsfiipanesrivactqdwnwzmtxyhuphapclrcxkh
befsdlgnazfkdqrpmlynzotgjjqboftsjwbdurex
oxanuyzivqibqdmsdylicfgtemhobaglersqnmzo
apuhkkrcpgutkxcevsfypybovzajwrjcrentezmj
dghufnipcbhmfstronapbqvillsdqhvulydfwtgz
qzcpwabkxskdsfoufankehivgojqdcingtuspobq
crwjmmteriwvmzegxuharadqxbclytletgpvgbol
fijwhpkredjohuvtqpcrdsxknnufsjxwnafhyvib
sberycdmzumfuhqwhcpmgjkxiqlsfekpivwurqds
etyloovgtkyxobgizwjctcfszdenavngvirxidqn
hklyjrmtgflqjwxvsretfuzmppwhulzypchjaxkd
udgtaefobwohwjsyjeroilmzksnuhgmrkxywtsfu
gvanqqxivmazqdikbylevehubfgpcxpixktzkfsp
jmnaltovihnslyzxutgvhwborryjwnbarejlczmf
wfivcghqdyqjylualgtqknobmupwjiotmzayvuhw
ixcpsszkxocbsfkmdangxgjwdhirezrkzmvbmhur
lopcnvqxkjpunabzwvixjydqttalypdctglneboh
yhkxeijsfaslanwcnivsmpqdowrylkqvobcaxwjy
kzeruubmzqeduhmofcpizilyfjktgbtmboxdojwt
nqrepxszmlrwpcdbyxkzlafsvvcnarfevinpgdqj
ajmzgkluhcuncpyepkxuorsfqytanmsxqdeczyla
mbgtwwdobsgfwjoqherkbknahlmvidvodqzfqlyv
pstgrzubontyrefdazmbnchuxxepcthgxkprifsl
clobimnwjewperagrmzwqtuhsavcpouzsfgebanc
odivyyfqduihylqsjgtmdmpcjnoxkfxqfsbhsnax
ruvitbwdqpvatghfcbodpejwzzgrevjizmrtkhun
enqdkopylgyrgtcitobysvwjucxerqwbuhigdcpe
qfkxaahsfwkjansulivoforelpqzmhzshudjupcz
twxkvdyfsrxcvijhedqfrglybbitgxlkbotvmjwp

The decryption function is

where a - 1 is the modular multiplicative inverse of a modulo m. I.e., it satisfies the equation

The multiplicative inverse of a only exists if a and m are coprime. Hence without the restriction on a decryption might not be possible. It can be shown as follows that decryption function is the inverse of the encryption function,

Read more ...

 

ROT13 Cipher
Applying ROT13 to a piece of text merely requires examining its alphabetic characters and replacing each one by the letter 13 places further along in the alphabet, wrapping back to the beginning if necessary. A becomes N, B becomes O, and so on up to M, which becomes Z, then the sequence continues at the beginning of the alphabet: N becomes A, O becomes B, and so on to Z, which becomes M. Only those letters which occur in the English alphabet are affected; numbers, symbols, whitespace, and all other characters are left unchanged. Because there are 26 letters in the English alphabet and 26 = 2 * 13, the ROT13 function is its own inverse:

ROT13(ROT13(x)) = x for any basic Latin-alphabet text x


An example plaintext to ciphertext using ROT13:

Plain: forel
Cipher: sbery

Read more ...

 

Polybius Square

A Polybius Square is a table that allows someone to translate letters into numbers. To give a small level of encryption, this table can be randomized and shared with the recipient. In order to fit the 26 letters of the alphabet into the 25 spots created by the table, the letters i and j are usually combined.
1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Basic Form:
Plain: forel
Cipher: 1243245113

Extended Methods:
Method #1

Plaintext: forel
method variations:
ltwkqqybpvvdguaaimzf

Method #2
Bifid cipher
The message is converted to its coordinates in the usual manner, but they are written vertically beneath:
f o r e l 
1 4 2 5 1 
2 3 4 1 3 
They are then read out in rows:
1425123413
Then divided up into pairs again, and the pairs turned back into letters using the square:
Plain: forel
Cipher: qwfsl

Read more ...
Method #3

Plaintext: forel
method variations:
rhyac hyacr yacrh
acrhy crhya

Read more ...[RUS] , [EN]

 

Permutation Cipher
In classical cryptography, a permutation cipher is a transposition cipher in which the key is a permutation. To apply a cipher, a random permutation of size E is generated (the larger the value of E the more secure the cipher). The plaintext is then broken into segments of size E and the letters within that segment are permuted according to this key.
In theory, any transposition cipher can be viewed as a permutation cipher where E is equal to the length of the plaintext; this is too cumbersome a generalisation to use in actual practice, however.
The idea behind a permutation cipher is to keep the plaintext characters unchanged, butalter their positions by rearrangement using a permutation
This cipher is defined as:
Let m be a positive integer, and K consist of all permutations of {1,...,m}
For a key (permutation) , define:
The encryption function
The decryption function
A small example, assuming m = 6, and the key is the permutation :

The first row is the value of i, and the second row is the corresponding value of (i)
The inverse permutation, is constructed by interchanging the two rows, andrearranging the columns so that the first row is in increasing order, Therefore, is:

Total variation formula:

e = 2,718281828 , n - plaintext length

Plaintext: forel

all 120 cipher variations:
forel forle foerl foelr foler folre froel frole freol frelo frleo
frloe ferol ferlo feorl feolr felor felro flreo flroe flero fleor
floer flore ofrel ofrle oferl ofelr ofler oflre orfel orfle orefl
orelf orlef orlfe oerfl oerlf oefrl oeflr oelfr oelrf olref olrfe
olerf olefr olfer olfre rofel rofle roefl roelf rolef rolfe rfoel
rfole rfeol rfelo rfleo rfloe refol reflo reofl reolf relof relfo
rlfeo rlfoe rlefo rleof rloef rlofe eorfl eorlf eofrl eoflr eolfr
eolrf erofl erolf erfol erflo erlfo erlof efrol efrlo eforl efolr
eflor eflro elrfo elrof elfro elfor elofr elorf loref lorfe loerf
loefr lofer lofre lroef lrofe lreof lrefo lrfeo lrfoe lerof lerfo
leorf leofr lefor lefro lfreo lfroe lfero lfeor lfoer lfore

Read more ...[1] , [2] , [3]

History of cryptography
2011 Easy Ciphers. All rights reserved. contact us